Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 930: 172794, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677421

RESUMEN

The rapid urbanization witnessed in developing countries in Asia and Africa has led to a substantial increase in municipal solid waste (MSW) generation. However, the corresponding disposal strategies, along with constraints in land resources and finances, compounded by unorganized public behaviour, have resulted in ineffective policy implementation and monitoring. This lack of systematic and targeted orientation, combined with blind mapping, has led to inefficient development in many areas. This review examines the key challenges of MSW management in developing countries in Asia and Africa from 2013 to 2023, drawing insights from 170 academic papers. Rather than solely focusing on recycling, the study proposes waste sorting at the source, optimization of landfill practices, thermal treatment measures, and strategies to capitalize on the value of waste as more pertinent solutions aligned with local realities. Barriers to optimizing management systems arise from socio-economic factors, infrastructural limitations, and cultural considerations. The review emphasizes the importance of integrating the study area into the circular economy framework, with a focus on enhancing citizen participation in solid waste reduction and promoting recycling initiatives, along with seeking economic assistance from international organizations.

2.
Heliyon ; 10(6): e27348, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38500986

RESUMEN

This paper reports the synthesis of magnetic lipase/Cu3(PO4)2 hybrid nanoflowers via a rapid ultrasonication method. The enzyme immobilization and nanoflower growth mechanism can be described as the (a) Fe2+, Cu2+, and phosphate "binding", (b) metal phosphate crystals formation, (c) formation and growth of metal phosphate crystals to form plate-like structures, and (d) self-assembly of plate structures that forms a flower-like structure. Some factors contributing to the morphology of the hybrid nanoflowers structure includes the time and concentration of lipase were studied. The effect of temperature, pH, and duration on the enzyme immobilization yield were also studied. In addition, the strong magnetic property (9.73 emu g-1) of the nanoflowers resulted in higher retrievability and reusability after repeated usage. Furthermore, the catalytic activity of lipase/Cu3(PO4)2 hybrid nanoflowers was investigated and the ideal conditions were determined whereby, the maximum activity was calculated to be 1511 ± 44 U g-1, showing a catalytic enhancement of 89% in comparison to free lipase. The reusability study showed that, after 5 cycles, the magnetic lipase/Cu3(PO4)2 nanoflowers successfully retained 60% of its initial activity. From the results obtained, it is worth noting that, the magnetic lipase/Cu3(PO4)2 hybrid nanoflowers are highly efficient in industrial biocatalytic applications.

3.
ACS Omega ; 9(5): 5100-5126, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343989

RESUMEN

Mercury is a type of hazardous and toxic pollutant that can result in detrimental effects on the environment and human health. This review is aimed at discussing the state-of-the-art progress on the recent developments on the toxicity of mercury and its chemical compounds. More than 210 recent works of literature are covered in this review. It first delineates the types (covering elemental mercury, inorganic mercury compounds, organic mercury compounds), structures, and sources of mercury. It then discusses the pharmacokinetic profile of mercury, molecular mechanisms of mercury toxicity, and clinical manifestation of acute and chronic mercury toxicity to public health. It also elucidates the mercury toxicity to the environment and human health in detail, covering ecotoxicity, neurotoxicity diseases, neurological diseases, genotoxicity and gene regulation, immunogenicity, pregnancy and reproductive system damage, cancer promotion, cardiotoxicity, pulmonary diseases, and renal disease. In order to mitigate the adverse effects of mercury, strategies to overcome mercury toxicity are recommended. Finally, some future perspectives are provided in order to advance this field of research in the future.

4.
Chemosphere ; 352: 141322, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296212

RESUMEN

Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.


Asunto(s)
Chlorella , Uranio , Purificación del Agua , Filtración , Ultrafiltración/métodos , Contaminación del Agua , Adsorción , Purificación del Agua/métodos
5.
Sci Total Environ ; 912: 169075, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056662

RESUMEN

As a fundamental transportation mode, maritime logistics has become an indispensable component on a global scale. However, there are multiple drawbacks associated with ports operating in traditional ways, such as higher cost, lower efficiency and generating more environmental pollution. Digital technologies have been researched and implemented gradually in green ports, especially in data collection and real-time monitoring, and these advances help to promote higher work efficiency and reduce detrimental environmental impacts. It was found that green ports (e.g. ports of Raffina, Los Angeles, and Long Beach) generally perform better in energy conservation and pollutant emission reduction. However, considering the variability in the level of digitalization, there are challenges in achieving effective communications between individual ports. Therefore, to optimize and update green port practices, a systematic review is necessary to comprehensively analyze the beneficial contributions of green ports. This review adopted bibliometric analysis to examine the shipping framework focusing on green ports digitalization and innovation. After that, with regards to the bibliometric results, five aspects were analyzed, including environment, performance, policy, technology, and management. Besides, intelligent life-cycle management was systematically discussed to improve green ports and maritime logistics performance and sustainability in three aspects, namely waste discharge, shipping management system and green ports management. The findings revealed that green ports and maritime logistics require digital cooperation, transformation, and management to achieve sustainable development goals, including route selection and control of ships' numbers, weather prediction, and navigational effluent monitoring, albeit with some obstacles.

6.
Biotechnol Adv ; 69: 108265, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783293

RESUMEN

Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.


Asunto(s)
Celulosa , Lignina , Lignina/química , Biomasa , Biocombustibles , Combustibles Fósiles
7.
Environ Chem Lett ; : 1-37, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37362011

RESUMEN

New technologies, systems, societal organization and policies for energy saving are urgently needed in the context of accelerated climate change, the Ukraine conflict and the past coronavirus disease 2019 pandemic. For instance, concerns about market and policy responses that could lead to new lock-ins, such as investing in liquefied natural gas infrastructure and using all available fossil fuels to compensate for Russian gas supply cuts, may hinder decarbonization efforts. Here we review energy-saving solutions with a focus on the actual energy crisis, green alternatives to fossil fuel heating, energy saving in buildings and transportation, artificial intelligence for sustainable energy, and implications for the environment and society. Green alternatives include biomass boilers and stoves, hybrid heat pumps, geothermal heating, solar thermal systems, solar photovoltaics systems into electric boilers, compressed natural gas and hydrogen. We also detail case studies in Germany which is planning a 100% renewable energy switch by 2050 and developing the storage of compressed air in China, with emphasis on technical and economic aspects. The global energy consumption in 2020 was 30.01% for the industry, 26.18% for transport, and 22.08% for residential sectors. 10-40% of energy consumption can be reduced using renewable energy sources, passive design strategies, smart grid analytics, energy-efficient building systems, and intelligent energy monitoring. Electric vehicles offer the highest cost-per-kilometer reduction of 75% and the lowest energy loss of 33%, yet battery-related issues, cost, and weight are challenging. 5-30% of energy can be saved using automated and networked vehicles. Artificial intelligence shows a huge potential in energy saving by improving weather forecasting and machine maintenance and enabling connectivity across homes, workplaces, and transportation. For instance, 18.97-42.60% of energy consumption can be reduced in buildings through deep neural networking. In the electricity sector, artificial intelligence can automate power generation, distribution, and transmission operations, balance the grid without human intervention, enable lightning-speed trading and arbitrage decisions at scale, and eliminate the need for manual adjustments by end-users.

8.
Environ Chem Lett ; : 1-41, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37362012

RESUMEN

Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 µg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.

9.
Environ Chem Lett ; : 1-31, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37362015

RESUMEN

The rising amount of waste generated worldwide is inducing issues of pollution, waste management, and recycling, calling for new strategies to improve the waste ecosystem, such as the use of artificial intelligence. Here, we review the application of artificial intelligence in waste-to-energy, smart bins, waste-sorting robots, waste generation models, waste monitoring and tracking, plastic pyrolysis, distinguishing fossil and modern materials, logistics, disposal, illegal dumping, resource recovery, smart cities, process efficiency, cost savings, and improving public health. Using artificial intelligence in waste logistics can reduce transportation distance by up to 36.8%, cost savings by up to 13.35%, and time savings by up to 28.22%. Artificial intelligence allows for identifying and sorting waste with an accuracy ranging from 72.8 to 99.95%. Artificial intelligence combined with chemical analysis improves waste pyrolysis, carbon emission estimation, and energy conversion. We also explain how efficiency can be increased and costs can be reduced by artificial intelligence in waste management systems for smart cities.

10.
Chemosphere ; 307(Pt 3): 135824, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35944673

RESUMEN

Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.


Asunto(s)
Enzimas Inmovilizadas , Lacasa , 2,4-Dinitrofenol , Enzimas Inmovilizadas/química , Humanos , Concentración de Iones de Hidrógeno , Lacasa/metabolismo , Fenoles/metabolismo , Agua
11.
Sci Total Environ ; 849: 157755, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35921924

RESUMEN

The energy sector contributes significantly to the emission of greenhouse gases (GHGs) due to the use of fossil fuels which leads to climate change problems. Worldwide, there is a shift from fossil fuel-based energy to cleaner energy sources such as solar, wind, geothermal, and biomass. Wind energy is one of the promising cleaner energy sources as it is feasible and cost-effective. However, the development of wind farms causes impacts on sustainability aspects. This article aims to review the impacts of wind energy generation on environmental, economic, and social aspects of sustainability and their mitigation strategies. The aim was achieved by reviewing recent research papers on different aspects of wind energy sustainability. The environmental impacts reviewed include the effects on avian life, noise pollution, visual impacts, microclimate and vegetation. Apart from environmental impacts, wind energy generation faces issues in energy and financial sustainability, such as the wind power fluctuation, technology lagging and use of fixed feed-in tariff contracts that do not consider wind energy advancement and end-of-life management. We discussed that turbine deterrents, automatic curtailment, low gloss blades and sustainable siting of wind farms as some of the effective ways to combat wind energy environmental impacts. In addition, we discussed that energy storage systems, setting up microgrids, combination of solar, wind and energy storage, and renewable energies policies are some of the ways to combat wind energy's economic and energy impacts. Lastly, the recommendations, and future perspectives on wind energy generation sustainability are discussed.


Asunto(s)
Fuentes Generadoras de Energía , Gases de Efecto Invernadero , Combustibles Fósiles , Microclima , Energía Renovable , Viento
12.
Biotechnol Bioeng ; 119(10): 2609-2638, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35851660

RESUMEN

Over the past decade, nanotechnology has been developed and employed across various entities. Among the numerous nanostructured material types, enzyme-incorporated nanomaterials have shown great potential in various fields, as an alternative to biologically derived as well as synthetically developed hybrid structures. The mechanism of incorporating enzyme onto a nanostructure depends on several factors including the method of immobilization, type of nanomaterial, as well as operational and environmental conditions. The prospects of enzyme-incorporated nanomaterials have shown promising results across various applications, such as biocatalysts, biosensors, drug therapy, and wastewater treatment. This is due to their excellent ability to exhibit chemical and physical properties such as high surface-to-volume ratio, recovery and/or reusability rates, sensitivity, response scale, and stable catalytic activity across wide operating conditions. In this review, the evolution of enzyme-incorporated nanomaterials along with their impact on our society due to its state-of-the-art properties, and its significance across different industrial applications are discussed. In addition, the weakness and future prospects of enzyme-incorporated nanomaterials were also discussed to guide scientists for futuristic research and development in this field.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Nanoestructuras/química , Nanotecnología/métodos
13.
Environ Chem Lett ; 20(4): 2277-2310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431715

RESUMEN

The increasing global industrialization and over-exploitation of fossil fuels has induced the release of greenhouse gases, leading to an increase in global temperature and causing environmental issues. There is therefore an urgent necessity to reach net-zero carbon emissions. Only 4.5% of countries have achieved carbon neutrality, and most countries are still planning to do so by 2050-2070. Moreover, synergies between different countries have hampered synergies between adaptation and mitigation policies, as well as their co-benefits. Here, we present a strategy to reach a carbon neutral economy by examining the outcome goals of the 26th summit of the United Nations Climate Change Conference of the Parties (COP 26). Methods have been designed for mapping carbon emissions, such as input-output models, spatial systems, geographic information system maps, light detection and ranging techniques, and logarithmic mean divisia. We present decarbonization technologies and initiatives, and negative emissions technologies, and we discuss carbon trading and carbon tax. We propose plans for carbon neutrality such as shifting away from fossil fuels toward renewable energy, and the development of low-carbon technologies, low-carbon agriculture, changing dietary habits and increasing the value of food and agricultural waste. Developing resilient buildings and cities, introducing decentralized energy systems, and the electrification of the transportation sector is also necessary. We also review the life cycle analysis of carbon neutral systems.

14.
Sci Total Environ ; 832: 154868, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35358520

RESUMEN

Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application.


Asunto(s)
Nanopartículas del Metal , Microplásticos , Carbono , Enzimas Inmovilizadas/metabolismo , Estudios de Factibilidad , Plásticos
15.
Environ Res ; 212(Pt A): 113123, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35339467

RESUMEN

The intensification of urbanisation and industrial activities significantly exacerbates the distribution of toxic contaminations into the aqueous environment. Persistent organic pollutants (POPs) have received considerable attention in the past few decades because of their persistence, long-distance migration, potential bioaccumulation, latent toxicity for humans and wildlife. There is no doubt that POPs cause serious effects on the global ecosystem. Therefore, it is necessary to develop a simple, safe and sustainable approach to remove POPs from water bodies. Among other conventional techniques, the adsorption process has proven to be a more effective method for eliminating POPs and to a larger extent meet discharge regulations. Nanomaterials can effectively adsorb POPs from aqueous solutions. For most POPs, a >70% adsorptive removal efficiency was achieved. The major mechanisms for POPS uptake by nano-adsorbents includes electrostatic interaction, hydrophobic (van der Waals, π-π and electron donor-acceptor) interaction and hydrogen bonding. Nano-adsorbent can sustain a >90% POPs adsorptive removal for about 3 cycles and reuseable for up to 10 cycles. Challenges around adsorbent ecotoxicity and safe disposal were also discussed. The present review evaluated recent research outcomes on nanomaterials that are employed to remove POPs in water systems.


Asunto(s)
Contaminantes Orgánicos Persistentes , Contaminantes Químicos del Agua , Adsorción , Ecosistema , Humanos , Agua/química , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 807(Pt 1): 150606, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34592292

RESUMEN

Contamination of the aquatic ecosystem by heavy metals is a growing concern that has yet to be addressed with an efficient, cost-effective and environmentally-friendly solution. Heavy metals occur naturally in the earth's crust and also result from anthropogenic activities. Due to the rapid increase in industrialization, there is an increase in consumer demands across various industries such as metal processing, mining sector, agricultural activities, etc. and this has led to an increase in heavy metal concentrations in the aqueous environment. Cellulose-based aerogels are a novel third-generation of aerogels that have recently attracted a lot of attention due to their high adsorption efficiency, eco-friendly prospects and cost effectiveness. In this review, recent literature on cellulose-based aerogel adsorbents used for the removal of heavy metals from aqueous solution has been compiled. The preparation of cellulose-based aerogels, adsorption mechanisms, effects of experimental factors such as pH, temperature, contact time, initial metal concentration and adsorbent dose have been discussed. In addition, cost analysis of cellulose-based adsorbents and some challenges in this research field along with recommendations of improvements have been presented. It can be concluded that functionalizing of cellulose-based aerogels with amine groups, thiol groups, other compounds such as nanobentonite and chitosan results in very high adsorption capacities. The adsorption studies revealed that pseudo-second-order kinetic model was the most commonly encountered adsorption kinetic model, and the most commonly encountered adsorption isotherm model was the Langmuir isotherm model. The main adsorption mechanisms were electrostatic interaction, complexation and ion exchange.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Efectos Antropogénicos , Celulosa , Ecosistema , Concentración de Iones de Hidrógeno , Cinética , Agua
17.
Sci Total Environ ; 810: 152181, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883167

RESUMEN

With the immense potential of bioenergy to drive carbon neutrality and achieve the climate targets of the Paris Agreement, this paper aims to present the recent advances in bioenergy production as well as their limitations. The novelty of this review is that it covers a comprehensive range of strategies in bioenergy production and it provides the future prospects for improvement. This paper reviewed more than 200 peer-reviewed scholarly papers mainly published between 2010 and 2021. Bioenergy is derived from biomass, which, through thermochemical and biochemical processes, is converted into various forms of biofuels. This paper reveals that bioenergy production is temperature-dependent and thermochemical processes currently have the advantage of higher efficiency over biochemical processes in terms of lower response time and higher conversion. However, biochemical processes produce more volatile organic compounds and have lower energy and temperature requirements. The combination of the two processes could fill the shortcomings of a single process. The choices of feedstock are diverse as well. In the future, it can be anticipated that continuous technological development to enhance the commercial viability of different processes, as well as approaches of ensuring their sustainability, will be among the main aspects to be studied in greater detail.


Asunto(s)
Biocombustibles , Carbono , Biomasa , Paris , Temperatura
18.
Sci Total Environ ; 809: 151657, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34793787

RESUMEN

The impacts of COVID-19 on global environmental pollution since its onset in December 2019 require special attention. The rapid spread of COVID-19 globally has led countries to lock down cities, restrict traffic travel and impose strict safety measures, all of which have implications on the environment. This review aims to systematically and comprehensively present and analyze the positive and negative impacts of COVID-19 on global environmental pollution and carbon emissions. It also aims to propose strategies to prolong the beneficial, while minimize the adverse environmental impacts of COVID-19. It systematically and comprehensively reviewed more than 100 peer-reviewed papers and publications related to the impacts of COVID-19 on air, water and soil pollution, carbon emissions as well as the sustainable strategies forward. It revealed that PM2.5, PM10, NO2, and CO levels reduced in most regions globally but SO2 and O3 levels increased or did not show significant changes. Surface water, coastal water and groundwater quality improved globally during COVID-19 lockdown except few reservoirs and coastal areas. Soil contamination worsened mainly due to waste from the use of personal protective equipment particularly masks and the packaging, besides household waste. Carbon emissions were reduced primarily due to travel restrictions and less usage of utilities though emissions from certain ships did not change significantly to maintain supply of the essentials. Sustainable strategies post-COVID-19 include the development and adoption of nanomaterial adsorption and microbial remediation technologies, integrated waste management measures, "sterilization wave" technology and energy-efficient technologies. This review provides important insight and novel coverage of the environmental implications of COVID-19 in more than 25 countries across different global regions to permit formulation of specific pollution control and sustainability strategies in the COVID-19 and post-COVID-19 eras for better environmental quality and human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Carbono , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Material Particulado/análisis , SARS-CoV-2
19.
RSC Adv ; 11(26): 15762-15784, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481192

RESUMEN

Wide usage of plastic products leads to the global occurrence of microplastics (MPs) in the aquatic environment. Due to the small size, they can be bio-ingested, which may cause certain health effects. The present review starts with summarizing the main sources of various types of MPs and their occurrences in the aquatic environment, as well as their transportation and degradation pathways. The analysis of migration of MPs in water environments shows that the ultimate fate of most MPs in water environments is cracked into small fragments and sinking into the bottom of the ocean. The advantages and disadvantages of existing methods for detection and analysis of MPs are summarized. In addition, based on recent researches, the present review discusses MPs as carriers of organic pollutants and microorganisms, and explores the specific effects of MPs on aquatic organisms in the case of single and combined pollutants. Finally, by analysing the causes and influencing factors of their trophic transfer, the impact of MPs on high-level trophic organisms is explored.

20.
Sci Total Environ ; 746: 141291, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763611

RESUMEN

In this study, we have successfully synthesized honeycomb-like self-assembled structure of TiO2 modified ZnO/SnO2 nanostructure via co-precipitation method with exceptional high degradation activities for 2,4-dichlorophenol (2,4-DCP) and bisphenol A (BPA) pollutants. The as-prepared samples were calcined in tube furnace at high elevated temperature (700, 800 and 900 °C) for 1 h. Among the TiO2 modified samples, ZST10-700 showed higher charge separation as demonstrated from surface photovoltage spectroscopy, photoluminance and electrochemical curve. Surface morphology, crystallinity, optical property and different functional groups in the samples were determined with SEM, EDX, XRD, UV-Vis DRS and FTIR, respectively. Interestingly, 72% and 58% photocatalytic degradation efficiencies were achieved with optimized ZST10-700 for 2,4-DCP and BPA, respectively. In comparison, the pure ZS-700 only showed 36% and 29% photocatalytic degradation efficiencies, respectively. The improved photocatalytic degradation efficiencies of the optimized ZST10-700 are mainly due to improved charge separation and prolonged charge lifetime. It was further verified that by increasing calcination temperature, the photocatalytic activity decreased, and this is attributed to the formation of photo-inactive phases like Zn2SnO4 and ZnTiO3. We believe that this work will provide an effective strategy to construct ternary heterojunction for the elimination of pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...